U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Class (Stereo):
CHEMICAL (ABSOLUTE)


VBP-15 FREE ALCOHOL, also known as Vamorolone and VBP-15, is an anti-inflammatory compound used in the treatment of muscular dystrophy. Vamorolone is a dissociative steroid that retains high affinity binding and nuclear translocation of both glucocorticoid (agonist) and mineralocorticoid (antagonist) receptors, but does not show pharmacodynamic safety concerns of existing glucocorticoid drugs at up to 20 mg/kg/day. Vamorolone is a first-in-class steroidal multi-functional drug that shows potent inhibition of pro-inflammatory NFkB pathways via high-affinity binding to the glucocorticoid receptor, high affinity antagonism for the mineralocorticoid receptor, and membrane stabilization properties. Pre-clinical data in multiple mouse models of inflammation showed retention of anti-inflammatory efficacy, but loss of most or all side effects. Vamorolone has received Orphan Drug Designation in the US and Europe and is being developed for chronic treatment of boys with Duchenne Muscular Dystrophy (DMD).

Class (Stereo):
CHEMICAL (ABSOLUTE)

Otesaconazole (previously known as VT-1161), an antifungal agent, is an oral inhibitor of fungal lanosterol demethylase (CYP51) but did not inhibit human CYP51. Inhibition of CYP51 results in the accumulation of chemicals known to be toxic to the fungus. CYP51 is the molecular target of the class of drugs referred to as 'azole antifungals'. Mycovia pharmaceuticals initiate enrolment in a phase III trial for the treatment of patients with recurrent vaginal candidiasis (yeast infection). In vitro and in vivo pharmacology studies have demonstrated that the drug is highly active against dermatophytes that cause onychomycosis. Viamet successfully completed phase II clinical trials were was studied the efficacy and safety of oral otesaconazole in patients with onychomycosis of the toenail. In addition, Viamet has completed phase II clinical trial, where was studied the efficacy and safety of otesaconazole in patients with moderate-severe interdigital tinea pedis.
Ganaxolone (3alpha-hydroxy-3beta-methyl-5alpha-pregnan-20-one) (GNX) is the 3beta-methylated synthetic analog of allopregnanolone; it belongs to a class of compounds referred to as neurosteroids. GNX is an allosteric modulator of GABA(A) receptors acting through binding sites which are distinct from the benzodiazepine binding site. It has activity in a broad range of animal models of epilepsy. GNX has been shown to be well tolerated in adults and children. In early phase II studies, GNX has been shown to have activity in adult patients with partial-onset seizures and epileptic children with history of infantile spasms. It is currently undergoing further development in infants with newly diagnosed infantile spasms, in women with catamenial epilepsy, and in adults with refractory partial-onset seizures. Ganaxolone is a CNS-selective GABAA modulator being developed in three different dose forms (IV, capsule, and liquid) intended to maximize therapeutic reach to adult and pediatric patients in both acute and chronic care settings.Ganaxolone is a synthetic analog of endogenous allopregnanolone, which has been shown to be an effective anticonvulsant by restoring electrical balance to the seizing brain. While allopregnanolone’s anticonvulsant and anti-anxiety activities are well documented, allopregnanolone has the potential to convert back to its metabolic precursor progesterone, which could lead to hormonal side effects. Ganaxolone has been designed with an added methyl group that prevents back conversion to an active steroid which unlocks ganaxolone’s potential for chronic use. In preclinical studies, ganaxolone exhibited potency and efficacy comparable to allopregnanolone. Both ganaxolone and allopregnanolone bind to GABAA at the synaptic and extrasynaptic binding sites. Activity with extrasynaptic GABAA receptors are of particular importance for treating patients who developed tolerance to benzodiazepines and barbiturates. Ganaxolone binds to the GABAA receptors, which opens the pore to allow chloride ions to move into the postsynaptic neuron, leading to the inhibition of neurotransmission.
Tauroursodeoxycholic acid (TUDCA) is an endogenous hydrophilic bile acid used clinically to treat certain liver diseases. It is approved in Italy and Turkey for the treatment of cholesterol gallstones and is an investigational drug in China, Unites States, and Italy. Tauroursodeoxycholic acid is being investigated for use in several conditions such as Primary Biliary Cirrhosis (PBC), insulin resistance, amyloidosis, Cystic Fibrosis, Cholestasis, and Amyotrophic Lateral Sclerosis. Tauroursodeoxycholate (TUDC) promote choleresis by triggering the insertion of transport proteins for bile acids into the canalicular and basolateral membranes of hepatocytes. In addition, Tauroursodeoxycholate exerts hepatoprotective and anti-apoptotic effects, can counteract the action of toxic bile acids and reduce endoplasmic reticulum stress. Tauroursodeoxycholate can also initiate the differentiation of multipotent mesenchymal stem cells (MSC) including hepatic stellate cells and promote their development into hepatocyte-like cells. Although the hepatoprotective and choleretic action of TUDC is empirically used in clinical medicine since decades, the underlying molecular mechanisms remained largely unclear.
Estetrol is the natural human fetal selective estrogen receptor modulator. It is synthesized exclusively by the human fetal liver during pregnancy. Estetrol has a moderate affinity for human estrogen A receptor (ERa) and estrogen B receptor (ERb). Estetrol may be suitable as a potential drug for human use in applications such as hormone replacement therapy (vaginal atrophy, hot flushes), contraception and osteoporosis. The most common drug-related adverse events were lower abdominal pain, nausea, headache, dysmenorrhoea, breast enlargement and acne. Estetrol had been in clinical trials for the treatment of breast and prostate cancers.

Class (Stereo):
CHEMICAL (ABSOLUTE)

Difelikefalin is an orally bioavailable second-generation peptide. It is an investigational peripheral kappa opioid receptor agonist. Difelikefalin significantly reduced moderate to severe chronic itching while achieving across-the-board clinically meaningful improvements in quality of life measures in patients with hemodialysis-associated pruritus in a phase 2 study. In a phase 2 clinical investigation, difelikefalin was safe, well tolerated and showed robust analgesic activity for postoperative pain in female patients undergoing laparoscopy, with a significant reduction in post-operative morphine consumption and opioid-related side effects. Now difelikefalin is in phase III clinical trials for the treatment of post-operative pain and pruritus.

Class (Stereo):
CHEMICAL (ABSOLUTE)



Cortexolone 17α-propionate (WINLEVI, BREEZULA) is a steroid belonging to the family of cortexolone derivatives. It is a topical and peripherally selective androgen antagonist. WINLEVI is used for the treatment of acne and has completed Phase II clinical trials and Phase III trials. BREEZULA is used for the treatment of androgenic alopecia and is currently undergoing a Phase II trial in the US.